If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8+14y+39y^2=0
a = 39; b = 14; c = -8;
Δ = b2-4ac
Δ = 142-4·39·(-8)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-38}{2*39}=\frac{-52}{78} =-2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+38}{2*39}=\frac{24}{78} =4/13 $
| (7b)^-2/3=(√7b)^3 | | 9/10-x=2/5 | | x/5.4=21/20 | | x^2−9x−22=0 | | −19−1,4y=37,1+3,7y. | | 20-3x^2-7x=0 | | 20-3^2-7x=0 | | x/2+3=3 | | 2^(2x+3)+1=32.2^x | | 11x+2=7+5x | | 23-x=3x-1 | | X^2+0.6x+0.01=0 | | 5–5x=15 | | x^2-5x=-3900 | | 5–5x=15x= | | v-21/8=12 | | 3*10x=72 | | X^2+0.06x+0.01=0 | | 2•x+10=2 | | -5y-7+4y+5= | | 3x+7=4=5x | | 4n−–5=13 | | -7m=-6 | | y,3y+9=18 | | -3(x-6)=-5x-24 | | (3q-40)=(2q+11) | | -5(x-9)-19=46 | | 2x+12=4x-26 | | x−3÷2=11 | | x+2x+3x+4x=10x | | −18−z=13z+10 | | 14z−11,5z=6,427 |